
Juri Barthel http://www.er-c.org/barthel/drprobe/drprobe-paper.pdf  1 Preprint version © (2018) – 

Dr. Probe: A software for high-resolution STEM image simulation 

 

J. Barthel
1,2

* 

 

1
 Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen, Germany 

2
 Ernst Ruska-Centre (ER-C 2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany 

* Corresponding author, Email: mailto:ju.barthel@fz-juelich.de: 

Keywords: STEM, image simulation, multislice, software 

Accepted by Ultramicroscopy (June 2018), DOI: 10.1016/j.ultramic.2018.06.003 

Note: This is the author’s preprint version 

 

Abstract 

The Dr. Probe software for multislice simulations of STEM images is introduced, and reference 

is given of the applied methods. Major program features available with the graphical user 

interface version are demonstrated by means of a few examples for bright-field and dark-field 

STEM imaging as well as simulations of diffraction patterns. The numerical procedure applied 

for the simulation of thermal-diffuse scattering by the frozen-lattice approach is described in 

detail. Intensity variations occurring in simulations with atomic-column resolution due to frozen-

lattice variations are discussed in the context of atom counting. It is found that a significant 

averaging over many lattice configurations with different random atomic displacements is 

required to prevent atom-counting bias from simulations. A strategy is developed for the 

assessment of the amount of required averaging based on the estimated signal variance and the 

expected signal gain per atom in a column. 
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1. Introduction 

In the recent years high-resolution scanning transmission electron microscopy (STEM) has 

gained increasing interest with the commercial availability of aberration correctors. With this 

technique electron probes of below 100 pm size can be generated [1,2], to acquire structural 

information at a resolution sufficient to separate essentially all atomic distances materials. The 

very intuitive STEM modes of recording high-angle annular dark-field (HAADF) images 

providing Z-contrast [3] and the imaging of light atoms with annular bright-field (ABF) detectors 

[4] have attracted many labs world-wide to install and use aberration corrected STEM 

instruments.  

While dark-field and bright-field STEM images can often be interpreted intuitively and directly 

on a qualitative level, the extraction of quantitative sample information at the atomic scale often 

requires researchers to reproduce the mechanisms determining the image contrast numerically in 

the computer. Careful determination of experimental parameters and in particular of the detector 

sensitivity has been shown to allow a comparison of experiment and simulation on the same 

absolute intensity scale with atomic column resolution [5]. Image simulations are applied to solve 

a large variety of problems occurring in local atomic structure analysis where other references are 

rare, difficult to obtain, or completely absent. Out of many, a few examples are referenced here 

demonstrating the use of image simulations for the determination of local sample tilt and 

thickness, the measurement of elemental concentrations in atomic columns, the clarification of 

atomic arrangements at interfaces, surfaces, and defects, and the analysis of structural disorder 

and relative column shifts [6-15]. 

There exist several computer programs implementing numerical image simulations, which differ 

partially in the applied methodological approaches, in the procedural concepts, and in the 

accessible computational power. The present paper gives an introduction and overview of the 

Dr. Probe simulation software, which is mainly focused on providing a quick and user-friendly 

access to quantitative STEM image simulations with commercial desktop computers. Simulations 

with Dr. Probe concern the imaging of high-energy electron diffraction signals with insignificant 

energy loss (quasi elastic) at the atomic scale. The applied simulation approach allows the user to 

quantitatively reproduce experimental data and is implemented in a flexible algorithm keeping 

the computational costs low without compromising much in terms of simulation quality. 
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Fig. 1: Screenshot of the Dr. Probe graphical user interface showing, as an example, the structure model of Ru3Sn7 

[16] in [001] projection and a corresponding HAADF image calculated for an aberration corrected STEM instrument 

with 80 pm resolution at 300 kV accelerating voltage and for a sample of 15 nm thickness. 

The program is distributed free-of-charge for the academic community via download from 

website in form of executable object code [17]. The code runs on the central processing unit 

(CPU) of a computer node and allows spreading the calculation load in parallel over many 

processors. An intuitive graphical user interface (GUI) as shown in Fig. 1 is provided for 

Microsoft Windows operating systems to perform STEM image and diffraction simulations. In 

addition to the GUI, command-line tools are provided for Microsoft Windows, Linux, and Mac 

OS X allowing versatile, scripted and larger scale computations even across several computer 

nodes. Besides STEM image simulations, the command-line tools also offer capabilities to 

calculate high-resolution coherent transmission electron microscopy (TEM) images. However, 

the introduction given in this paper is meant to provide reference of the particular methods, their 

implementation, and functionalities available with the graphical user interface for STEM 

simulations. Additional and more detailed information is presented on the Dr. Probe website [17] 

which contains an extensive documentation of all software features as well as introductory 

examples. 
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2. Methods 

STEM image simulations with Dr. Probe apply the multislice method [18] to calculate the quasi-

elastic forward scattering of the incident high-energy electron probes by the sample. While 

scanning an electron probe over positions distributed equidistantly in a rectangular frame, 

multislice electron-diffraction calculations are performed independently for each position, and the 

fractions of probe intensity falling into detector areas are registered. Atomic structure models are 

input to the simulations and provided in form of text lists similar to the CEL format of the EMS 

software [19] or by CIF structure files [20]. Information is required regarding the input cell 

dimension, angles, and symmetries together with fractional coordinates, occupancy factors, and 

thermal vibration parameters for each atomic site. STEM detectors are placed in a diffraction 

plane as disks for bright-field (BF), and as rings for annular bright-field, and annular dark-field 

imaging. Azimuthal segments of disks and rings are supported enabling the simulation of 

differential phase-contrast imaging [21,22]. A radial sensitivity profile may be specified for each 

detector, allowing a more accurate quantitative comparison between simulation and experiment 

[23]. With one simulation run, images are calculated for multiple detectors. 

Image simulations with the Dr. Probe software have been tested for consistency with other 

simulation programs. The calculation of projected potentials agrees down to the numerical single-

precision level (10
-6

) with those of µSTEM [24] when using the same atomic form factors of 

Waasmaier & Kirfel [25]. HAADF STEM image intensities agree on the sub-percent level with 

µSTEM results also when form factors of Weickenmeier & Kohl [26] are used by Dr. Probe. HR-

TEM image simulations with the Dr. Probe command-line tools have been checked to agree on 

an absolute scale to those of EMS [19] and MacTempas [27]. 

 

2.1 Electron-probe formation 

Experimental parameters relevant for an image simulation essentially define the shape of the 

electron probe and how it propagates through an atomic structure. The most important 

instrumental parameters are 

 the kinetic energy 𝑒𝑈 of the incident electrons, where 𝑈 is the microscope’s accelerating 

voltage and 𝑒 is the elementary charge, 

 the size of the probe-forming aperture in terms of the semi-convergence angle 𝛼, 
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 coefficients of coherent aberrations of the probe forming lenses (e.g. defocus 𝐶1,0, two-

fold astigmatism 𝐶1,2, coma 𝐶2,1, three-fold astigmatism 𝐶2,3, spherical aberration 𝐶3,0, 

etc.), and 

 the effective diameter 𝐷0 (FWHM) of the source in the object plane. 

The kinetic energy of the incident electron determines its de Broglie wavelength according to the 

formula 

 𝜆 =
𝑐 ℎ

√𝑒𝑈(𝑒𝑈+2𝑚0𝑐2)
 , (1) 

where 𝑐 is the speed of light in vacuum, ℎ is Planck’s constant, and 𝑚0 is the rest mass of the 

electron. A convergent electron probe incident along the 𝑧 axis on a point 𝑹 = (𝑥, 𝑦) of the 

object plane is calculated in a conjugate reciprocal-space plane with vectors 𝒌 = (𝑘𝑥, 𝑘𝑦) 

according to the expression 

 𝜓0(𝒌; 𝑹) = 𝐴(𝒌)exp [−𝑖𝜒(𝒌)]exp [−2𝜋𝑖 𝒌 ⋅ 𝑹] , (2) 

where 𝐴(𝒌) is an aperture function, and 𝜒(𝒌) describes the coherent aberrations of the probe. The 

vector 𝒌 is the component of the wave vector 𝑲 perpendicular to the 𝑧 axis and 𝜆 = 1/|𝑲|. 

Within the usual approximation for small angles (𝜃 ≈ 𝜆|𝒌| ≪ 1), the parallel component 𝑘𝑧 is 

approximately constant with 𝑘𝑧 ≈ |𝑲|. Respective phase factors exp [2𝜋𝑖 𝑘𝑧 𝑧] are omitted in the 

probe wave function of Eq. (2). The aperture 𝐴(𝒌) blocks incident electrons with trajectories 

having angles 𝜃 > 𝛼 with respect to the 𝑧 axis, and the aberration function is a polynomial of the 

form 

 𝜒(𝒌) =
2𝜋

𝜆
ℜ [∑ ∑

𝐶𝑗+𝑙−1,𝑗−𝑙

𝑗+𝑙
𝜆𝑗+𝑙(𝑘∗)𝑗𝑘𝑙𝐿(𝑗)

𝑙=0
𝑁
𝑗=1 ] , (3) 

describing an expansion to the order 𝑁 in powers of 𝑘. The second summation is up to a dynamic 

limit 𝐿(𝑗) = min (𝑗, 𝑁 − 𝑗) depending on the index 𝑗 of the first summation, such that 1 ≤ 𝑗 +

𝑙 ≤ 𝑁. The symbol ℜ indicates that the real part is taken from the polynomial as a function of 

wave-vector components in complex number notation 𝑘 = 𝑘𝑥 + 𝑖𝑘𝑦, 𝑘∗ = 𝑘𝑥 − 𝑖𝑘𝑦 with 

complex-valued aberration coefficients 𝐶𝑚,𝑛 = 𝐶𝑚,𝑛,𝑥 + 𝑖𝐶𝑚,𝑛,𝑦. The general expression in 

Eq. (3) reproduces the notation used by Krivanek et al. [1]. The probe wave function in real space 

is obtained by the inverse Fourier transformation of Eq. (2). Reference of the Fourier 

transformation and its discretized numerical form used in the program is given in Appendix A. 
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The effect of instrumental parameters on the formation of the electron probes and ronchigrams as 

displayed in Fig. 2 can be studied in real-time on user input with a dialog of the user interface. 

The implementation of Eq. (3) in the Dr. Probe user interface supports an expansion up to the 

order 𝑁 = 8. 

 

Fig. 2: Images related to STEM probe formation as generated by the Dr. Probe user interface showing (a) an 

aberration function, (b) a ronchigram at 90 nm defocus, and (c) a probe intensity distribution. The examples are for 

300 keV electrons, a semi-convergence angle of 25 mrad, and an effective source size of 80 pm. A strong and 

dominant three-fold astigmatism of 415 nm has been applied besides small other aberrations. 

 

2.2 Electron-diffraction calculation 

Electron diffraction calculations by the multislice method can be implemented efficiently as an 

iterative algorithm of electron scattering in a thin object slice and subsequent propagation to the 

next slice [18]. The electron scattering in an object slice 𝑗 is described by multiplication of the 

electron wave function with a transmission function 𝑇𝑗(𝒓) . Propagation of the scattering result to 

the next slice is done by multiplication of a propagator function 𝑃𝑗(𝒌) in reciprocal space. Slices 

are partitions of the input atomic structure along 𝑧, ideally made thin enough to contain only one 

atomic plane. Given a wave function 𝜓𝑗(𝒓) present in the slice plane number 𝑗, the wave function 

in the next slice plane 𝑗 + 1 is calculated as  

 𝜓𝑗+1(𝒓) = ℱ−1[𝑃𝑗(𝒌) ℱ[𝑇𝑗(𝒓) 𝜓𝑗(𝒓)]] . (4) 

This sequence of scattering and propagation is iterated over the slices of the structure model until 

the target specimen thickness is reached. The iteration begins at the entrance plane 𝑗 = 0 with 

incident wave function 𝜓0(𝒓), as obtained by inverse Fourier transformation of Eq. (2). Fast 
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numerical Fourier transformations provide an efficient way to implement the algorithm as 

described by Ishizuka and Uyeda [28]. 

Transmission functions, also called phase gratings, describe the scattering of the electron from 

the atoms in an object slice in terms of phase changes applied to the electron wave function. In 

approximation for high electron energies 𝑒𝑈 and 𝑚0𝑐2 ≫ 𝑉(𝒓) [29], the phase change is 

calculated from a projected scattering potential 𝑉𝑗
𝑃(𝒓) for each slice as a complex phase factor 

 𝑇𝑗(𝒓) = 𝑒𝑖𝜎𝑉𝑗
𝑃(𝒓)  , (5) 

with interaction constant 𝜎 = 𝑚𝜆/(2𝜋ℏ2). The interaction constant contains the relativistic 

electron mass 𝑚 = 𝛾𝑚0 with 𝛾 = 1 + 𝑒𝑈/(𝑚0𝑐2), the electron wavelength 𝜆, and ℏ = ℎ/(2𝜋). 

Projected potentials are integrals of the three-dimensional scattering potential 𝑉(𝒓, 𝑧) along the 𝑧 

axis over right-open slice intervals [𝑧𝑗 , 𝑧𝑗+1) described by the formula 

 𝑉𝑗
𝑃(𝒓) = ∫ 𝑉(𝒓, 𝑧)

𝑧𝑗+1

𝑧𝑗
𝑑𝑧 . (6) 

For the numerical implementation, Eq. (6) is approximated by a full projection of a surrogate 

potential 𝑉𝑗(𝒓, 𝑧), which only includes contributions from the atoms contained in slice 𝑗. In this 

way, the projected potential can be computed efficiently by taking the inverse Fourier 

transformation of 𝑉𝑗(𝒌, 𝑘𝑧)|𝑘𝑧=0 in the reciprocal slice plane by the formula 

 𝑉𝑗
𝑃(𝒓) ≈ ∫ 𝑉𝑗(𝒓, 𝑧)

+∞

−∞
𝑑𝑧 =  ℱ−1[𝑉𝑗(𝒌, 0)] , (7) 

instead of handling and integrating a three-dimensional potential. The Fourier coefficients of the 

projected potential 𝑉𝑗(𝒌, 0) are sums of atomic form factors 𝑓𝛼
𝑒(|𝒌|) for electron scattering of 

atom types identified by index 𝛼 as in the expression  

 𝑉𝑗(𝒌, 0) = 𝑉𝑗
𝑃(𝒌) =

2𝜋ℏ2

𝑚0𝑎𝑏
∑ 𝑓𝛼

𝑒(|𝒌|) ∑ 𝜂𝛼,𝑙
𝑁𝛼,𝑗

𝑙=1
𝑁𝑡
𝛼=1 𝑒−2𝜋𝑖𝒌⋅𝑹𝛼,𝑙 , (8) 

with factors 𝜂𝛼,𝑙 accounting for partial site occupancy and a phase factor for shifting atomic form 

factors to the projected atom position 𝑹𝛼,𝑙. The second sum of Eq. (8) includes only the 𝑁𝛼,𝑗 

atoms with equilibrium positions in slice 𝑗. The product of the orthogonal supercell extensions 𝑎 

and 𝑏 in the denominator of the pre-factor is due to a box-normalization by the slice area when 

sampling form factors on discrete points of the reciprocal slice plane under periodic boundary 
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conditions (cf. Eq. (A3) in Appendix A). The double summation over all 𝑁𝑡 types of atoms and 

the 𝑁𝛼,𝑗 atoms of type 𝛼 in slice 𝑗 represents a two-dimensional structure factor given by 

 𝐹𝑗(𝒌) = ∑ 𝑓𝛼
𝑒(|𝒌|) ∑ 𝜂𝛼,𝑙

𝑁𝛼,𝑗

𝑙=1
𝑁𝑡
𝛼=1 𝑒−2𝜋𝑖𝒌⋅𝑹𝛼,𝑙 . (9) 

Inserting Eqs. (7) to (9) in Eq. (5) yields a compact expression for the numerical calculation of 

slice transmission functions 

 𝑇𝑗(𝒓) = exp [𝑖𝛾
𝜆

𝑎𝑏
 𝐹𝑗(𝒓)] ,  (10) 

where the functions 𝐹𝑗(𝒓) are obtained by inverse Fourier transform of Eq. (9). 

The numerical calculations of transmission functions are performed on a two-dimensional grid of 

𝑁𝑎 × 𝑁𝑏 points 𝒓 = (𝑟𝑎/𝑁𝑎, 𝑠𝑏/𝑁𝑏) with integer 𝑟 and 𝑠 in ranges 0 ≤ 𝑟 < 𝑁𝑎 and 0 ≤ 𝑠 < 𝑁𝑏 

for a given size 𝑎 × 𝑏 of the supercell in the slice plane. Resulting real-space sampling rates 

𝑎/𝑁𝑎 and 𝑏/𝑁𝑏 are related to the highest spatial frequencies 𝑘Ny,𝑎 = 𝑁𝑎/(2𝑎) and 𝑘Ny,𝑏 =

𝑁𝑏/(2𝑏) (Nyquist frequencies) and the reciprocal grid is sampled at points 𝒌 = (𝑢/𝑎, 𝑣/𝑏) with 

integer 𝑢 and 𝑣 in ranges −𝑁𝑎/2 ≤ 𝑢 < 𝑁𝑎/2 and −𝑁𝑏/2 ≤ 𝑣 < 𝑁𝑏/2. A further numerical 

limitation of the maximum diffraction vector 𝑘max is applied by an artificial circular aperture at 

2/3 of the smaller Nyquist frequency for propagators and transmission functions. This aperture 

suppresses the generation of diffracted beams with alias frequencies due to periodic wrap around 

occurring with the repeated forward and inverse Fourier transformation in Eq. (4). Including the 

aperture, the maximum diffraction vector considered by the diffraction simulation is given by 

 𝑘max ≤
1

3
min (

𝑁𝑎

𝑎
,

𝑁𝑏

𝑏
) . (11) 

Although using lower number of grid points is favorable in terms of calculation speed, too low 

numbers may cause a loss of accuracy by cutting off significant Fourier coefficients 𝑉𝑗
𝑃(𝒌) of 

projected potentials. When preparing a simulation, the number of samples 𝑁𝑎 and 𝑁𝑏 should be 

chosen based on Eq. (11), where the value of 𝑘max relevant for the numerical calculation can be 

decided by fulfilling the following two conditions: (i) The maximum scattering angle 𝜃max with 

2sin(𝜃max/2) = 𝜆𝑘max should be larger than the largest detection angle, and (ii) applied atomic 

form factors 𝑓𝛼
𝑒(|𝒌|) should be sufficiently decayed at |𝒌| = 𝑘max. While reasoning for the first 

condition is trivial, the second condition depends on accuracy requirements defining which decay 

of form factors is acceptable in a particular case. Working with a too low 𝑘max results in real-
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space grid which is too coarse for an accurate sampling of the sharp potential peaks occurring at 

the projected atomic positions. As a consequence, the scattering strengths of the corresponding 

atoms are reduced. An example has been discussed by Forbes et al. [30] who found 

“imperceptively different results” when reducing 𝑘max from 330 1/nm to 165 1/nm for the 

diffraction of electrons with 300 keV kinetic energy by a thin strontium titanate crystal. Similar 

convergence tests could help to determine optimum sampling parameters when aiming for highly 

accurate simulations. 

The atomic form factors 𝑓𝛼
𝑒(|𝒌|) are calculated with the parameterization and tables published by 

Weickenmeier & Kohl [26]. This parameterization implicitly reproduces the asymptotic behavior 

of screened Coulomb potentials at large scattering angles relevant for HAADF STEM imaging. 

In addition, absorptive form factors are available with this parameterization in an already 

integrated form, which account for the loss of probe current in the elastic channel due to thermal-

diffuse scattering by phonon excitations. Absorptive form factors may be used for pure bright-

field calculations when including damping of form factors by Debye-Waller factors 𝑒−𝐵|𝒌|2/4 due 

thermal vibrations. The Debye-Waller parameter is given by 𝐵 = 8𝜋2〈𝑢𝑠
2〉, and 〈𝑢𝑠

2〉 = 〈𝑢𝑥
2〉 =

〈𝑢𝑦
2〉 = 〈𝑢𝑧

2〉 is the isotropic equivalent mean square displacement amplitude. Calculations 

including thermal-diffuse scattering and in particular scattering to large angles, e.g. HAADF 

STEM, should be done without Debye-Waller factors in a different approach, as will be discussed 

in detail below. 

Free-space propagator functions 𝑃𝑗 = 𝑒−𝑖𝜒𝑗 applied with each step of the multislice algorithm in 

Eq. (4) account for the phase shifts 𝜒𝑗 of the partial plane waves (beams) after diffraction by the 

projected potential. The phase shift for a beam under given diffraction angle 𝜃 is measured 

relative to that of the beam along the 𝑧 direction of the simulation frame. It is proportional to the 

respective difference Δ𝑠𝑗 in optical path length for considering the transfer of two different beams 

between two parallel planes, which are at distance 𝑐𝑗 to each other, as illustrated in Fig. 3a. The 

relation between relative phase shift and optical path difference is given by the equation 

 𝜒𝑗 =
2𝜋

𝜆
Δ𝑠𝑗 . (12) 

Geometrical analysis for Δ𝑠𝑗 yields a formula for the relative phase shift with 

 𝜒𝑗(𝜃, 𝜑, 𝜏, 𝜉) =
2𝜋

𝜆
𝑐𝑗 [

1

cos (𝜏)
−

1

cos(𝜃) cos(𝜏)+cos(𝜉−𝜑) sin(𝜃)sin (𝜏)
] , (13) 
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where a general tilt of plane normals has been considered by angles 𝜏 with respect to the 𝑧 axis 

and an orientation 𝜉 of the tilt to the 𝑥 axis. Angles 𝜃 and 𝜑 denote scattering angle and 

orientation, respectively. 

 

Fig. 3: (a) Ray diagram illustrating the optical path difference Δsj for two plane waves with wave vectors K and K0 

under relative angle of  traveling in free space downwards between two parallel planes. (b) Relative error of the 

small angle approximation with a parabolic propagator of Eq. (16) compared to the propagator based on the optical 

path difference in Eq. (13) without sample tilt. 

The application of a propagator for tilted planes allows us to simulate tilt of the crystal structure 

away from a zone axis avoiding conflict with periodic boundary conditions in the structure model 

as proposed by Chen et al. [31]. The angular variables in Eq. (13) are related to the component 

𝒌 = (𝑘𝑥, 𝑘𝑦) of the wave vector 𝑲 = (𝒌, 𝑘𝑧) with 

 sin(𝜃) = 𝜆|𝒌| ,  𝑘𝑥 = |𝒌|cos (𝜑) ,  𝑘𝑦 = |𝒌|sin (𝜑) , (14) 

and to the respective component 𝒕 of a reference wave vector 𝑲𝒕 = (𝒕, 𝑡𝑧) with 

 sin(𝜏) = 𝜆|𝒕| ,  𝑡𝑥 = |𝒕|cos (𝜉) ,  𝑡𝑦 = |𝒕|sin (𝜉) . (15) 

In the approximation for small angles 𝜃 and 𝜏, Eq. (13) simplifies drastically to the well-known 

formula of the parabolic propagator 

 𝜒𝑗(𝜃, 𝜑, 𝜏, 𝜉) = 𝜒𝑗(𝒌, 𝒕) ≈ −𝜋𝜆𝑐𝑗(|𝒌 − 𝒕|2 − |𝒕|2) , (16) 

which can be safely applied for bright-field STEM and TEM simulations with medium and high 

accelerating voltages. The relative error made with the small angle approximation of Eq. (16) 

compared to the propagator in Eq. (13) is on the order of 10
-3

 for typical bright-field TEM 

regimes below 50 mrad. In the large-angle regime, the relative error increases to a few percent as 

shown in Fig. 3b. Simulations with the Dr. Probe user interface apply propagators with phase 

shifts given by Eq. (13). 
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2.3 Thermal-diffuse scattering 

Thermal-diffuse scattering (TDS) is simulated by the frozen-lattice approach [32] with random 

atomic displacements following a normal probability distribution (Einstein solid). The root mean 

square width 〈𝑢𝑠
2〉−1/2 of the displacement distribution along a spatial axis is parameterized by 

isotropic, equivalent thermal-displacement parameters 𝑈 or 𝐵 with 〈𝑢𝑠
2〉 = 𝑈 = 𝐵/(8𝜋2), which 

has been introduced above as Debye-Waller parameter. The parameters 𝑈 or 𝐵 are provided 

individually for each atomic site with the input structure model. After partitioning the structure 

into thin slices, respectively scaled random displacements are added to the equilibrium position 

𝑹𝛼,𝑙 of each atom before calculating the projected slice structure-factor 𝐹𝑗(𝒌) as in Eq. (10). The 

random displacements follow a normal probability distribution implemented by Box-Muller 

transformation of uniformly distributed pseudo-random numbers [33]. Care is taken, that partial 

form factors of different atomic species assigned to the same site are displaced coherently in the 

case of mixed partial site occupancy. 

 

Fig. 4: Scheme of frozen-lattice variation implemented in the Dr. Probe multislice algorithm. For a given periodic 

structure model, a certain number (here 4) of frozen-lattice configurations are pre-calculated for each slice (here 2) 

and stored as set of transmission functions in the computer working memory. During each step of the multislice, a 

random configuration is selected from the stored sets, building an individual sequence of random atomic 

displacements. Two examples are shown on the right side, where pairs of numbers in brackets denote the structure 

slice and the index of the randomly selected configuration which is color-coded additionally. 
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The implementation of frozen-lattice variations in the multislice algorithm is realized with a set 

of pre-calculated frozen states for each slice of the input structure. The specific transmission 

function applied for an object slice is chosen randomly from the set of prepared configurations as 

illustrated in Fig. 4. By this way, an individual sequence of the pre-calculated random atom 

displacements is produced for each multislice calculation by repeated application of the random 

selection scheme over the whole sample thickness. 

Pre-loading a large set of transmission functions with different random atomic displacements into 

the computer working memory enables fast run-time variation of frozen-lattice configurations. 

Each pixel of a scan image may then be calculated with a different frozen lattice of the sample 

without repeating the often computational demanding calculation of projected potentials with 

new random displacements. This procedure also reproduces closely the actual scenario of 

sequential scan-image recording, where each electron of the scanning probe is diffracted by an 

atomic structure in a different state and the image intensity is generated by an incoherent 

superposition of such individual electron-diffraction signals. Furthermore, free control is 

achieved over the number of lattice configurations applied to a probe position (scan pixel) during 

run-time without additional computational effort. The frozen-lattice variation can thus be 

combined with simultaneous statistical variations of probe position and probe aberrations, for 

example when simulating partial spatial and partial temporal coherence of the electron probe, or 

to calculate position-averaged convergent-beam electron-diffraction (PACBED) patterns. 

The random selection described above is limited in terms of how many configurations can be 

stored in the working memory of a computer. Random sequences drawn from a limited statistical 

set as such are also not as statistically independent as if new random displacements would have 

been calculated for each multislice run. However, with a large number of pre-calculated 

configurations, random sequences provide a sufficiently rich diversity such that a good estimate 

of thermal-diffuse scattering can be achieved. As a rough guideline for thicker samples, the 

number of statistically independent configurations per slice of the periodic unit should be larger 

than the number of repeats of that unit to realize the target sample thickness. In this case, 

consecutive repeats of the same displacement configuration become rare events and can be 

almost completely avoided by applying random selection without returning. For very thin 

samples, the number of statistically independent configurations of the periodic unit should be 

larger than the number of multislice calculations performed for probe positions within the area 
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illuminated by the probe. The two guidelines stated above should be applied in combination, i.e. 

by using the larger of the two numbers. 

 

 

3. Results and discussion 

A very practical feature of the Dr. Probe software is the option to extract signal at periodic 

thickness levels up to a maximum object thickness in one simulation run. This means that STEM 

images for all detectors, wave functions, or diffraction patterns are generated as a series over 

sample thickness with minimum additional effort. Example images are displayed in Fig. 5 for 

three different thicknesses of a Ru3Sn7 crystal in [001] orientation (cf. Fig. 1) where STEM 

images of three different detectors (BF, ABF, and HAADF) have been calculated simultaneously 

in one simulation run. The simulation was done for an aberration-free 300 keV electron probe 

with 25 mrad semi-convergence angle and an effective source size of 80 pm. Detectors were 

placed on the optical axis in the diffraction plane as a BF detector disk of 5 mrad radius, an ABF 

detector from 12 mrad to 24 mrad, and a HAADF detector from 80 mrad to 200 mrad. As 

expected, the BF images show strong contrast variations with increasing thickness, while this is 

greatly reduced for ABF and essentially absent in HAADF images. The PACBED patterns in the 

rightmost column required a different simulation setup with 10 mrad semi-convergence angle and 

were calculated in a second run. These patterns show a strong variation of beam excitations and 

interferences in the bright-field region, which can find use in accurate measurements of sample 

thickness and tilt [34]. 
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Fig. 5: Example STEM image simulation of the Ru3Sn7 crystal structure (cf. Fig. 1) for BF, ABF and HAADF 

detectors and different sample thickness. The STEM images have an edge length of 0.937 nm and are displayed with 

linear gray-level scales over the intensity ranges noted below each column in fractions of the incident probe current. 

Each row corresponds to a different sample thickness, as noted on the left. The PACBED pattern simulated with 

10 mrad probe semi-convergence angle for the same thicknesses are displayed in the rightmost column. The scale 

bars in the PACBED patterns correspond to 10 mrad. 

Extracting detected signal at each slice of the object structure is the densest sampling of thickness 

dependency achievably with multislice calculations. Such image series may provide insight into 

the dynamics of the electron probe diffraction and propagation as a function of sample thickness 

and probe position. Examples are displayed in Fig. 6 in form of intensity distributions in the x-z 

plane containing the incident probe position, where the electron probe propagates through the 

sample along z from top to bottom. Common to all three profiles is a focusing of the probe 

intensity to the first few nanometers of the sample. This indicates that the majority of the STEM 

signal will be generated from scattering events close to the entrance surface. The left profile 

shows also a transfer of intensity to the Ru column left of the Sn column where the probe was 

initially positioned. This cross-column intensity transfer is absent in the profile on the right, when 

the probe is positioned over a more isolated Ru column. Such observations may be of importance 

when evaluating STEM images in terms of local concentration. Probe intensity profiles also help 
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to determine optimum experimental setups, for example to decide which sample tilt away from a 

crystallographic zone axis should be applied to maximize the signal for dopant atom detection 

[35] or how to obtain optimum signal for composition analysis [36]. 

 

Fig. 6: Intensity profiles for three different probe positions as indicated by the crosses in the structure projections. 

The profiles show the intensity distributions in a Ru3Sn7 sample of 30 nm thickness in the x-z plane marked by the 

dotted line in the projected structure models above. The electron probe is placed (left) on a Sn column close to a Ru 

column, (center) over free space between two columns, and (right) on a more isolated Ru column. 

The requirement to perform many multislice calculations for STEM image simulations including 

thermal-diffuse scattering usually leads to very long calculation times on the scale of several 

minutes up to hours. Reduction of the computation time can be achieved in general by using 

faster computing hardware, by intensive parallelization of the algorithm, and by minimizing the 

number of multislice calculations with clever calculation setups and algorithms. While the 

computational power of hardware is usually a matter of financial resources, the latter two points, 

parallelization and optimized algorithms, need to be provided as functionality of the software. 
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Parallelization can be applied very effectively to STEM image simulations, since the repeated 

multislice calculations are essentially independent and therefore pose a computational farming 

problem. This means that STEM simulations offer high parallelization potential on the level of 

single scan image pixels. Alternatively, parallelization approaches making use of the immense 

number of processing cores available on graphical processing units (GPUs) work on a lower 

algorithmic level to perform huge amounts of multiplications and Fourier transformations 

simultaneously. The parallelization concept used with the Dr. Probe GUI distributes individual 

multislice calculations over multiple CPU cores available on a given machine and combines the 

results to STEM images. Support of parallel GPU computing is under consideration for future 

versions. The command-line tools of the Dr. Probe package are designed to calculate strictly on a 

single CPU core. This provides control over the use of CPUs when running multiple calculation 

processes in parallel, for example by calls from a scripting language. 

Optimized scan setups, e.g. by minimizing the number of scan pixels, provide a very efficient 

way of reducing the computational costs for essentially all simulation scenarios [37]. The range 

of spatial frequencies of STEM images is limited by the effective probe size in the object plane. 

The maximum spatial frequency to be expected in this context is 𝑔max = 2𝛼/𝜆, neglecting a 

further limitation due to partial coherence effects, where 𝛼 is the semi-convergence angle and 𝜆 

the electron wavelength. Accordingly, the minimum number of scan pixels 𝑁h,v for a rectangular 

scan frame of edge lengths 𝐿h,v required to sample spatial frequencies up to 𝑔max is given by the 

formula 

 𝑁h,v = 4𝐿h,v𝛼/𝜆 , (17) 

where the indices “h” and “v” denote the quantities applying to the horizontal (h) and vertical (v) 

direction of the scan frame. For a periodic object, minimum edge lengths of the scan frame are 

obtained by setting them equal to the edge lengths of the projected unit cell. 

The finally decisive factor determining the computational costs of a STEM simulation with a 

given computer program, regardless of the applied parallelization approach, is the total number of 

multislice calculations to be performed. Intuitively, one might assume that this number is equal to 

the number of scan pixels, and this is certainly sufficient as long as the target is a qualitative 

comparison between experiment and simulation. However, a significant variation of the detected 

intensity is caused by frozen-lattice variations. This signal variation is visible in the middle row 

of Fig. 7, where only one individual frozen-lattice configuration has been used for each probe 
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position. Due to the low number of samples taken from the set of frozen states, the signal 

registered for identical atomic columns still varies even when evaluating integrated column 

intensities and after applying the convolution with the effective source distribution. The effect of 

insufficient averaging can be observed also in diffraction patterns as displayed in Fig. 8, where 

the expected character of thermal diffuse scattering is reproduced only in the patterns calculated 

from a significant number of configurations. Thus, a certain amount of averaging over frozen-

lattice configurations is required in order to achieve quantitatively correct simulations. 

 

Fig. 7: HAADF STEM image simulations for (a) Ru3Sn7 [001], (b) SrTiO3 [001], and (c) Au [001] as displayed by 

the structure models in the top row (rendered by VESTA [38]) with unit cells marked by boxes. Image simulations 

were performed for aberration-free 300 keV electron probes with a semi-convergence angle of  = 25 mrad, a 

detector collection range of 80 mrad to 250 mrad, and a minimum number of probe positions. The middle row 

illustrates the signal variation obtained with one frozen-lattice configuration per probe position. Images in the bottom 

row are obtained from the middle row images by convolution with a Gaussian source distribution of 80 pm diameter 

(FWHM). The scan frame sizes are (a) 0.937 nm (48), (b) 0.781 nm (40), and (c) 0.816 nm (42), where numbers in 

brackets denote the respective number of probe positions used along each image dimension. 
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Fig. 8: Convergent-beam electron-diffraction patterns of a STEM probe placed over a Sr column in perovskite 

SrTiO3
 
calculated with parameters as in Fig. 7. The crystal is in [001] orientation and has a thickness of 20 nm. 

Different amounts of frozen-lattice configurations were used in the calculations: (a) shows the result obtained with 

one configuration, while the other patterns are averages of (b) 10, (c) 100, and (d) 1000 configurations. All patterns 

show one quarter of the diffraction plane with the origin in the lower left corner and a common scale bar as displayed 

in (a). The diffraction intensity distributions are color-coded on the same logarithmic scale. 

An interesting question is therefore: How often should the multislice calculation be repeated per 

scan pixel for averaging frozen-lattice configurations until a sufficiently accurate signal estimate 

is obtained? There are two alternative routes for improving the accuracy of the simulation with 

approximately similar additional computational effort (i) averaging multiple calculations per scan 

pixel and (ii) increasing the number of scan pixels per unit area. The second route requires a 

flexible variation scheme as described above, i.e. the ability to calculate each probe position with 

different lattice configurations. The subsequent convolution with the effective source distribution 

will in this scheme average over the different configurations used for the probe positions within 

the source diameter. Increasing the number of scan pixels for a given scan area will consequently 

increase the number of configurations contributing to a scan pixel after convolution with the 

source distribution. 

An uncertainty in the signal estimation on the side of the simulation can introduce a bias for the 

quantitative comparison between simulation and experiment, i.e. a systematic error, to the 
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evaluation. In the following we will discuss the atom counting approach [34] in this context, 

which has high demands for signal-to-noise ratio and minimum simulation bias when aiming for 

single atom accuracy. In this approach, the simulation is used as calibration reference, and ideally 

the final counting error should be limited by the experimental recording noise. In order to 

minimize the influences of insufficiently known optical parameters, recording noise, and 

variations in the simulation, integrated or mean intensities are evaluated frequently, where signal 

is accumulated over image areas assigned to single atomic columns [12,34,39-41]. The same 

approach is applied here by summing intensities of discrete scan positions 𝒙𝑖,𝑗 according to the 

formula 

 𝐼(̅𝒙0) = ∆𝑥h∆𝑥v ∑ 𝐼(𝒙𝑖,𝑗 − 𝒙0)𝒙i,j∈𝐴  , (18) 

where 𝐴 denotes the area of the scan assigned to an atomic column position 𝒙0 in the image. 

Horizontal and vertical scan step sizes are denoted by ∆𝑥h, ∆𝑥v, respectively. When the integrated 

intensity of Eq. (18) is normalized as fraction of the incident probe intensity 𝐼0, effective cross-

sections 𝜎 = 𝐼(̅𝒙0)/𝐼0 of the electron probe are calculated in square length units [40]. For 

aberration-corrected STEM imaging such cross sections depend essentially on sample thickness 

(number of atoms in a column), structure, orientation, electron energy, probe convergence angle, 

and detector collection angle. In order to avoid confusion in the following, cross sections are 

denoted by the symbol 𝜎, and standard deviations are denoted by the symbol s. 

The variances of cross sections of the incident probe with atomic columns are estimated from 

HAADF STEM test simulations of perovskite SrTiO3 and f.c.c. Au crystals, both in [001] 

orientation, with the same parameters as those used for the simulated images displayed in Fig. 7. 

Two column species of medium core charge density are found in the SrTiO3 images (i) Sr 

columns with Z = 38 and (ii) TiO columns with Z = 22+8 = 30 per periodic thickness unit 

(c = 3.905 Å). These are compared to gold columns with a large core charge density of Z = 78 per 

unit (c = 4.078 Å). The tests are performed with minimum computational effort in terms of the 

number of multislice calculations, i.e. with minimum number of probe positions according to 

Eq. (17) and with one frozen-lattice configuration per probe position. However, each probe 

position is calculated with a different frozen-lattice configuration using the random selection 

scheme described in the previous section. The signal after convolution by the source distribution 

is integrated as described by Eq. (18) over circular areas of 130 pm and 90 pm radius around the 

known column positions for SrTiO3 and Au, respectively. Different radii are used here due to the 
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different distances of apparent peaks in the HAADF scans. In total 640 peaks have been analyzed 

for each column species and thickness. The thickness dependency is sampled in discrete steps of 

a unit cell, thus corresponding to an increase of one Au atom, one Sr atom, and one TiO group, 

respectively. 

The results of the statistical analysis are plotted in Fig. 9 over a range of sample thickness up to 

250 Å. The mean values are on the order of 1000 pm
2
 and show the monotonic increase over 

thickness already discussed by E et al. [40]. Slight changes in the slope are found for very thin 

samples below 50 Å. Consistently higher values are obtained for columns with higher 

accumulated core charge reproducing the well-known Z-contrast in STEM imaging [3]. Dots in 

the plot of Fig. 9a are for values obtained with µSTEM software and identical simulation setups. 

Good consistency is found between the two programs. The mean values deviate by less than 1 %, 

although different parameterizations of atomic form factors were used. The deviations are in the 

range of expected variance caused by frozen-lattice variations in the applied test cases. 

Standard deviations calculated from the 640 independent column scan images are by about two 

orders of magnitude smaller than the cross-section mean values with stronger slopes at lower 

thicknesses, see Fig. 9b. Interestingly, the standard deviation of the Au column data decreases 

even slightly beyond 100 Å sample thickness. Although the relative errors of about 1 % seem low 

and promising at first glance, the ability to determine the number of atoms in a column by means 

of cross-sections depends on the ratio between signal variation and signal gain per atom. Low 

ratios indicate better signal-to-noise ratio for atom counting. While the signal variation is 

reflected by the standard deviation s of the measured cross section, the signal gain per atom is 

given by the slope Δ𝜎/Δ𝑛 with respect to a change in the number of atoms. Ratios 𝑠/(Δ𝜎/Δ𝑛 ) 

are plotted in Fig. 9c starting at values just below 1/4 for very thin samples and increasing to 

values close to or above 1 for thicker samples. This means, that the probability to determine the 

number of atoms correctly from measured cross-sections decreases with increasing thickness. 
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Fig. 9: Statistics on integrated column intensities measured as cross-sections of the incident probe. (a) Mean values 

(lines) compared to a few example values (dots) obtained with the µSTEM software [24]. (b) Standard deviations of 

effective cross-sections measured from Au (yellow), Sr (green), and TiO (blue) peaks in HAADF STEM images of 

Au [001] and SrTiO3 [001] (cf. Fig. 7). (c) Ratios of standard deviations s and local slopes Δ/Δn of the mean signal 

with respect to a change in thickness by one unit cell, i.e. one atom. Horizontal lines mark the limits for atom 

counting errors of 0 atoms (solid) and 1 atom (dashed) with a confidence of 95 % assuming normally distributed 

variations of cross-sections. 

Assuming normally distributed variations of cross sections and a locally linear signal gain per 

atom, an atom counting error of 0 can be achieved with better than 95 % confidence if the ratio 

𝑠/(Δ𝜎/Δ𝑛 )  is below 1/4. Atom counting errors of 1 are achieved with better than 95 % 
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confidence in cases with ratios below 3/4. Relaxing the confidence to 1s levels (68 %) essentially 

doubles these limits. A derivation of these relations between ratio limits and atom counting error 

is presented in Appendix B for a reasonable linear approximation of local signal gain. In the 

presented test cases, atom counting errors of zero cannot be expected with high probability based 

on such minimum effort calculations. Counting Sr atoms with an error of 1 requires a 

significantly lower variance of the simulation data for samples thicker than 100 Å, while this is 

already achievable with the minimum-effort setup for TiO and Au columns applied here. Lower 

ratios can be obtained by increasing the number 𝑀 of averaged frozen-lattice configurations per 

probe position. The improvement will, however, be approximately proportional to √𝑀. Aiming 

for the lower limit of 1/4 for counting errors of 0, the number of configurations to average 

should be around 10 or more for TiO columns and Au columns and even 40 for counting Sr 

atoms. It should be emphasized again, that the error estimates presented here are due to variances 

introduced by the frozen-lattice approach alone and do not consider experimental counting noise 

at all. Nevertheless, analogous error estimation is possible for the experimental data by replacing 

values for s by respective estimates of signal variations occurring in experiment. If ratios 

𝑠/(Δ𝜎/Δ𝑛 ) for the experimental data are much larger than those of the reference simulation, an 

increase of the number of averaged frozen-lattice configurations per probe position in the 

simulation will, however, not improve the error estimates for atom counting. 

 

4. Conclusion 

The Dr. Probe software for high-resolution STEM image simulation is introduced giving 

reference of the methods and approximations applied in the numerical calculations. A graphical 

user interface is available free-of-charge for academic and research institutions providing easy 

and intuitive access to quantitatively correct simulations. Program features interesting for most 

users are demonstrated by means of a few examples, such as the simultaneous calculation of 

bright-field, annular bright-field, and annular dark-field STEM images as series over sample 

thickness. Guidelines for reasonable simulation setups are given concerning the required grid size 

to sample projected potentials, the required number of frozen-lattice configurations to consider, 

and the number of probe positions to be used. Detailed documentation describing how to use the 

software is available from a website [17]. 
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An algorithm allowing fast run-time variation of frozen-lattice configurations for multislice 

simulations including thermal-diffuse scattering is described in detail. An effectively individual 

configuration of random atomic displacements can be used for each probe position by means of 

random selection from sufficiently large pre-calculated sets of slice transmission functions. This 

scheme provides full control over the number of configurations considered for each scan pixel 

and enables combined variations of frozen-lattice configurations, probe position and aberrations, 

e.g. for PACBED simulations and image calculations considering partial coherence. 

HAADF STEM simulations performed with minimum computational effort, i.e. minimum 

number of probe positions per unit cell and one frozen-lattice configuration per probe position, 

show noticeable signal variations. Implications of these variations on the accuracy of atom 

counting using simulations as reference are discussed for selected examples. Case studies for 

perovskite SrTiO3 and f.c.c. Au, both in [001] crystal orientation indicate that such minimum 

effort calculations can introduce a systematic bias in the atom counting corresponding to an error 

of 1 with 95 % confidence even when evaluating integrated intensities. A reduction of this bias 

is possible by averaging over several calculations with different frozen-lattice configurations for 

each probe position or alternatively by increasing the number of probe positions per unit area. For 

the presented examples, an increase of computational effort by about a factor of 10 and more 

reduces the signal variance in the simulation to a level where the correct atom count can be 

determined with high confidence. The required minimum amount of extra averaging may 

however depend on the specific STEM setup and should be evaluated for each case. Such an 

increase of the already quite demanding computational effort for STEM image simulations is, 

however, only justified if the variance estimated for the experimental data is on a similar or even 

lower level. 

 

Appendix A. Fourier transformation 

Fourier transformation is essential in the numerical realization of the multislice algorithm. It is 

also applied in the calculation of projected potential distributions in real space from atomic form 

factors given in reciprocal space, for band-width limitations, and for convolution of signal for 

example with source-distribution functions. The forward Fourier transformation of a function 

𝑦(𝑥) is expressed in one dimension as 
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 ℱ[𝑦(𝑥)](𝑘) = 𝑦̃(𝑘) = ∫ 𝑦(𝑥) 𝑒−2𝜋𝑖𝑘𝑥𝑑𝑥
+∞

−∞
 , (A1) 

And the inverse Fourier transformation is given by 

 ℱ−1[𝑦̃(𝑘)](𝑥) = 𝑦(𝑥) = ∫ 𝑦̃(𝑘) 𝑒2𝜋𝑖𝑘𝑥𝑑𝑘
+∞

−∞
 . (A2) 

The discretized Fourier transformation used in the multislice algorithm works on two-

dimensional arrays of size 𝑛 × 𝑚 and assumes periodic boundary conditions along both 

dimensions. The implementation used by Dr. Probe is based on the FFTPACK library [42]. Box 

normalization is applied as in the following formula for the Fourier coefficients 

 𝑦̃𝑢,𝑣 =
1

𝑚𝑛
∑ ∑ 𝑦𝑟,𝑠 𝑒−2𝜋𝑖(𝑢𝑟/𝑚+𝑣𝑠/𝑛)𝑛−1

𝑠=0
𝑚−1
𝑟=0  , (A3) 

and for the inverse transformation to real-space data 

 𝑦𝑟,𝑠 = ∑ ∑ 𝑦̃𝑢,𝑣 𝑒2𝜋𝑖(𝑢𝑟/𝑚+𝑣𝑠/𝑛)𝑚−1
𝑣=0

𝑚−1
𝑢=0  , (A4) 

where indices (𝑟, 𝑠) and (𝑢, 𝑣) denote zero-based pixel indices along the two dimensions sampled 

by 𝑚 and 𝑛 points in real space and reciprocal space, respectively. The normalization should be 

considered when evaluating wave-function output in terms of the incident probe current. For 

example the DC Fourier coefficient 𝑦̃0,0 corresponds to the mean value of the real-space data. In 

the main text, the Fourier-space representation is noted by an explicit dependency on a reciprocal 

coordinate 𝑘 or 𝑞, i.e. by 𝑦(𝑘) instead of using a curly mark 𝑦̃, whereas 𝑦(𝑟) denotes the 

representation of a function of a real space coordinate 𝑟 or 𝑥. 

 

Appendix B. Derivation of limits for estimating atom counting errors 

We assume a normal distribution of observed cross-section data 𝜎 with the probability density 

functions 

 𝑝𝑛(𝜎; 𝜎𝑛, 𝑠𝑛) = exp (
−(𝜎−𝜎𝑛)2

2𝑠𝑛
2 ) /√2𝜋𝑠𝑛

2 , (B1) 

around mean values 𝜎𝑛 with variances 𝑠𝑛
2, where 𝑛 identifies an integer number of atoms in a 

column. We assume further a positive signal gain 𝜇𝑛 =
Δ𝜎𝑛

Δ𝑛
> 0 per atom and that atom counting 

is done by assigning an observed signal 𝜎 to a number of atoms 𝑛 where (𝜎 − 𝜎𝑛)2 is minimum. 

In this scenario and within a linear approximation between discrete expectation values 𝜎𝑛 of the 
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signal as obtained from a reference simulation, the assignment 𝜎 → 𝑛 can be done based on the 

condition 

 𝜎low =
𝜎𝑛−𝜎𝑛−1

2
< 𝜎 ≤

𝜎𝑛+1−𝜎𝑛

2
= 𝜎high . (B2) 

The probability that the correct number of atoms (no counting error) is assigned for a given signal 

is then determined by 

 𝑃0(𝑛, 𝜎𝑛, 𝑠𝑛) =
∫ 𝑝𝑛(𝜎;𝜎𝑛,𝑠𝑛)𝑑𝜎

𝜎high
𝜎low

∑ ∫ 𝑝𝑖(𝜎;𝜎𝑖,𝑠𝑖)𝑑𝜎
𝜎high

𝜎low

𝑛max
𝑖=𝑛min

 , (B3) 

where the atom counts 𝑛min ≥ 1 and 𝑛max cover a sufficiently large range of probability 

distributions with significant contribution in the integrated signal range {𝜎low, 𝜎high}. 

Accordingly, the probability to make similar assignments with a counting error of δ𝑛 is given by 

 𝑃δ𝑛(𝑛, 𝜎𝑛, 𝑠𝑛) =
∑ ∫ 𝑝𝑖(𝜎;𝜎𝑛,𝑠𝑛)𝑑𝜎

𝜎high
𝜎low

𝑛+δ𝑛
𝑖=𝑛−δ𝑛

∑ ∫ 𝑝𝑖(𝜎;𝜎𝑛,𝑠𝑛)𝑑𝜎
𝜎high

𝜎low

𝑛max
𝑖=𝑛min

 . (B4) 

The summation range in the numerator of Eq. (B4) should be limited such that 𝑛 − 𝛿𝑛 ≥ 1. 

 

Fig. B 1: Confidence of achieving counting errors of n = 0 (solid curve) and n = 1 (dashed curve) depending on the 

ratio of standard deviation s to constant signal gain /n per atom and normally distributed signal of variance s
2
. 

Horizontal lines mark confidence levels of 68 % (dashed) and 95 % (solid) corresponding to a 1s and 2s levels, 

respectively. Vertical lines are drawn from the respective points where these probabilities are met for the assumed 

atom counting scenario. 

The probability 𝑃δ𝑛(𝑛, 𝜎𝑛, 𝑠𝑛) of identifying the number of atoms 𝑛 in a column from the 

measured signal with an error of δ𝑛 reflects the confidence of successful atom counting. Fig. B 1 

shows how the confidence decays with increasing estimate of the signal variance 𝑠 relative to the 
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signal gain Δ𝜎/Δ𝑛 per atom when aiming for counting errors of 0 and 1. For the calculation of 

the plotted confidences a constant signal gain per atom and equal standard deviations have been 

assumed. This corresponds to a local approximation of the situation described in Fig. 9 of the 

main text, where signal gain and standard deviation can change with object thickness. The 

approximation should be sufficient for larger thickness, where the second derivative in the signal 

is small. The plot indicates that a high confidence of 95 % is obtained for ratios below 1/4 and 

3/4 for counting errors of 0 and 1, respectively. These limits double to 1/2 and 3/2 if the 

confidence level is lowered to 68 %. 
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